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Abstract—Classification systems for wave energy resources and 

wave energy converter (WEC) technologies could provide similar 

benefits to those for the wind energy industry: resource 

classification facilitating reconnaissance studies and project 

planning at both regional and national scales; and WEC 

classification streamlining and reducing costs of WEC device 

design and manufacturing. In the present study, a classification 

system for U.S. wave resources is used to investigate the feasibility 

of WEC classification. Wave spectra inputs from three wave 

energy resource classes delineated in this system are used to derive 

distributions of optimized WEC design scaling factors, as well as 

WEC design responses. Preliminary results indicate that a single 

standard WEC design class could serve within a given resource 

class, and corresponding regional wave climate, due to distinct 

wave energy distributions and concentrations of energy within 

partitioned period bands for each resource class. The WEC 

response to extreme loads was found to vary considerably within 

the most energetic of the resource classes examined, suggesting the 

need for these standard design classes to meet structural design 

requirements based on the upper limits of load response within a 

given resource class. However, the observed load metric variation 

is lower than the inter-region resource variations. 

 

Keywords— Wave Energy Converter (WEC); Wave Climate; 

Wave Resource Classification, WEC Classification; Site 

Conditions; Engineering Design. 

I. INTRODUCTION 

The success of wind energy resource and wind turbine 

classification systems has motivated interest in classification 

systems for the wave energy industry. A wave energy resource 

classification system would serve as a useful tool that facilitates 

scoping studies and project planning at both regional and 

national scales. A wave energy converter (WEC) classification 

scheme, ideally coupled with resource classification, would 

reduce design and manufacturing costs while minimizing 

technical and commercial risk. However, it is not entirely clear 

how to develop these wave energy classification systems in a 

way that provides similar benefits as those introduced in the 

wind energy industry. Like a wind turbine, a WEC should be 

designed to optimize power capture per unit cost, as well as 

maximize operational reliability and survive over a reasonable 

service life. However, unlike a wind turbine, the WEC’s ability 

to maximize power capture through resonance with the incident 

waves may drive the size of the device. These conflicting 

requirements, coupled with the nature of the wave resource, 

introduce significant loading variations and creates a non-

trivial design challenge.  

Classification of three-bladed horizontal axis wind turbines 

appears to emphasize operational reliability and survival under 

extreme load conditions, with turbine classes delineated using 

a reference wind speed representing an extreme 10-minute 

average wind speed occurring every 50-years on average, and 

subclasses determined by an expected turbulence intensity [1]. 

However, due to the high correlation between extreme wind 

speeds and mean wind speeds, this classification system also 

incorporates design considerations for average power 

generation. A preliminary WEC classification scheme recently 

presented by Cruz [2] delineated three wave energy resource 

classes (classes III to I, increasing in energy content) based on 

plots of mean sea state, i.e., significant wave height vs. mean 

peak period, for over three-thousand wave sites in the United 

Kingdom and Ireland. As mean significant wave height and 

wave energy density generally increase with mean peak period, 

the classes represent sites with increasing energy content from 

the lowest class (III), having the lowest mean peak period band, 
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to the highest class (I) having the highest period band. 

Preliminary WEC classes, corresponding to these wave energy 

resource classes, were proposed for specific WEC archetype 

subclasses, e.g., two subclasses of a point absorber, based on 

the root-mean-squared power-take-off (PTO) force derived 

from the extreme 75th percentile significant wave height for 

each wave energy resource class. As WEC classification was 

the main thrust of this study, metrics used for energy resource 

classification included only the mean significant wave height 

and mean peak period, which combined define a mean sea state 

from which other useful energy resource statistics, e.g., mean 

wave power density, and extreme (high-percentile) sea state 

statistics, can be derived.  

The wave energy resource classification system, as 

presented herein, classifies the resource based on the amount of 

energy (or power) available within the dominant partitioned 

peak period band containing the largest energy fraction. It also 

classifies the wave energy resource with a relative risk metric, 

where risks (characterized by the extreme significant wave 

height with a 50-year recurrence interval) are normalized by the 

mean significant wave height. Maps of the period partitioned 

available energy and relative significant wave height reveal 

distinct regional trends. 

The goal of this study is to investigate classification schemes 

for wave energy resources and WEC technologies. Initially a 

resource classification scheme is developed using key wave 

climate statistics, including those that characterize 

opportunities for wave power conversion, and those that 

characterize relative risks to WEC operation and survival. This 

resource classification provides the foundation for examining 

the potential feasibility of a WEC technology classification 

scheme, determined through assessment of the spread (variance) 

of both the optimized WEC design scaling factor, and WEC 

extreme load responses.  

The potential feasibility of WEC design classification was 

assessed in three basic steps. First, the U.S. wave climate 

(resource) was classified using several metrics to characterize 

and discriminate unique wave climate conditions. WEC design 

optimization and design response tools were then used to derive 

distributions of design scaling factors and extreme load 

responses within each of these identified wave resource classes. 

The methodologies and key results are presented sequentially 

in the following sections. 

II. WAVE RESOURCE CLASSIFICATION 

Wave resource classification statistics were derived from 

validated phase II 30-year hindcast outputs using the 3rd 

generation (3G) spectral wave model, WaveWatch III® 

(WWIII), at a spatial resolution of 4 min [3]. Partitioned wave 

height, peak period and mean direction were outputted at every 

grid point. Individual wave heights and peak periods are 

calculated for each partition representing either the local wind 

sea or individual swell components.  

Rather than classify a site’s resource by significant wave 

height (𝐻𝑠) and energy period (𝑇𝑒), as was done by Cruz (2015), 

the present study uses the annual available energy (AAE) 

density, in MWh/m, as the main classification parameter. The 

AAE density is the annual energy production (AEP) density 

assuming no energy conversion losses. It also accounts for the 

distribution of the AAE density within distinct partition period 

band classes. The significant wave height ( 𝐻𝑠)  and energy 

period (𝑇𝑒) for each partition are used to calculate the wave 

power density (𝐽) of that partition,  

𝐽 =
ρg

16
𝐻𝑠

2𝐶𝑔(𝑇𝑒 , ℎ) (1) 

where 𝐶𝑔 is the group velocity, a function of 𝑇𝑒  and the depth 

(ℎ) . The annual available energy (AAE) density is then 

calculated as a function of peak period ( 𝑇𝑝) 

 

AAE(Tp) = T𝑦𝑒𝑎𝑟 ∑ 𝐽(𝑇𝑝)𝑓(𝐽, 𝑇𝑝) (2) 

 

where T𝑦𝑒𝑎𝑟  is the number of hours in a year (8766 hours), and 

𝑓(𝐽, 𝑇𝑝) is the joint probability of the partitioned wave power 

density and peak periodf(J, Tp). The total AAE density is the 

summation over all peak periods 

 

AAE = ∑ AAE(Tp) (3) 

 

The mean annual wave power density, therefore, is defined as 

the total AAE density divided by the number of hours in a year. 

The total AAE and power densities are shown in Fig. 1. The 

largest values exceed 300 MWh/m along the West Coast, the 

south coast of Alaska, and Hawaii. AAE densities are generally 

between 50 and 200 MWh/m along the East Coast, and below 

50 MWh/m along the Gulf Coast. The AAE density is used to 

define four broad resource classes shown in Fig. 2: Class 0 sites 

(AAE<10 MWh/m), representing sites having consistently low 

power that would only support very specialized energy projects, 

e.g., powering remote sensors, Class 1 sites (10<AAE<50 

MWh/m), with generally low power that might support 

specialized application, e.g., desalinization, and Class 2 

(50<AAE<200 MWh/m) and Class 3 (200<AAE MWh/m) sites 

with moderate to high power supporting utility scale projects. 

The resource classification system herein distributes the 

AAE density within four different period bands. These period 

bands correspond to local wind seas (Band 1, 𝑇𝑝 < 7 s), short 

period swell (Band 2, 7 s < 𝑇𝑝 < 10 s), moderate period swell 

(Band 3, 10 s < 𝑇𝑝 < 14 s), and long period swell (Band 4, 

14 s < 𝑇𝑝) . This delineation of AAE density by period 

bandwidth allows WEC designers to distinguish sites where 

energy is concentrated within a dominant period bandwidth, a 

desirable resource attribute, as opposed to sites where the 

energy is spread relatively more evenly among multiple period 

bands.  

The geographic distributions of AAE/power density among 

these period bands are shown in Fig. 3. As expected local wind 

seas (Band 1) contribute little AAE energy density in any U.S. 

wave climate, and are the main source of wave energy 

(approximately half or more) in the Gulf Coast. Short period 

swell contributes the main source of energy in the East Coast 
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wave climate, and moderate period swell contributes the main 

source of energy for wave climates in the West Coast.  

 

 

Fig. 1. Geographic distribution of total AAE Density and mean annual wave 
power density. 

 

 

Fig. 2. Geographic distribution of wave energy resource classes. 

The resource classification system also distinguishes three 

different relative risk classes based on the correlation between 

𝐻𝑠50
 and 𝐻𝑠𝑚𝑒𝑎𝑛

, and the ratio 𝐻𝑠50
𝐻𝑠𝑚𝑒𝑎𝑛

⁄ , where 𝐻𝑠50
 is the 

significant wave height with a 50-year return period and 

𝐻𝑠𝑚𝑒𝑎𝑛
is the mean significant wave height. The relative risk 

metric, 𝐻𝑠50
𝐻𝑠𝑚𝑒𝑎𝑛

⁄ , is analogous to the turbulence intensity 

used to delineate wind resource subclasses. Mapping this 

relative risk metric, 𝐻𝑠50
𝐻𝑠𝑚𝑒𝑎𝑛

⁄ , one can distinguish regional 

trends shown in Fig. 4. The West Coast, Hawaii, and most of 

the southern coast of Alaska, are predominantly low relative 

risk wave climates. The East Coast, west coast of Alaska and 

Western Gulf Coast are classified as medium relative risk 

climates, and the Eastern Gulf Coast and northern coast of 

Alaska  are classified as high relative risk climates. Generally, 

the more energetic the wave climate, the lower the relative risk. 

In summary, key resource attributes, including AAE/power 

density and the relative risk metric, 𝐻𝑠50
𝐻𝑠𝑚𝑒𝑎𝑛

⁄ , were 

calculated and mapped for all U.S. coastal waters. These maps 

indicate distinct regional wave climates, with distinct classes of 

resources. In the following analysis, wave spectra time series 

from thirty wave sites in three U.S. regional wave climates (ten 

sites for each climate) are used as inputs in WEC design 

optimization algorithms to derive distributions of WEC scaling 

factors, and to evaluate the feasibility of developing standard 

WEC design classes. For this preliminary investigation, spectra 

from ten sites uniformly distributed within a regional wave 

climate were selected for three different wave climates to 

provide the broadest range of resource conditions: The West 

Coast, a predominantly Class 3 resource, the East Coast (Class 

2), and Gulf Coast (Class 1). 

 

 

Fig. 3. Geographic distribution of wave energy resource classes 
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Fig. 4 - Geographic distribution of wave climates based on relative risk 

classes: low ( 𝐻𝑠50
𝐻𝑠𝑚𝑒𝑎𝑛

⁄ ≤ 5), medium (5 <  𝐻𝑠50
𝐻𝑠𝑚𝑒𝑎𝑛

⁄ < 8), high (8≤

 𝐻𝑠50
𝐻𝑠𝑚𝑒𝑎𝑛

⁄ ). 

Fig. 5 shows the mean sea states (𝐻𝑠 , 𝑇𝑒  ) for these thirty 

wave sites relative to all sites for which full spectra outputs are 

available from NOAA’s thirty-year hindcast. It also highlights 

the variation of average sea states within each climate and 

resource class for comparison with wave climates in coastal 

water of the UK and Ireland [2]. The West Coast sites, clustered 

around 𝑇𝑒 = 10 seconds, are mostly high energy sites with 

𝐻𝑠  exceeding 2 m, except for two sites (3 and 6) where 𝐻𝑠 is 

just over 1 m. These relatively low energy (Class 2) West Coast 

sites are located off the coast of southern California. The East 

Coast sites are clustered around 𝑇𝑒 =6 seconds with 𝐻𝑠 from 

about 1 m to just over 1.5 m, with the exception of site 10, 

which is an anomalous site with similar energy characteristics 

as Gulf Coast sites. Finally, the Gulf Coast sites are clustered 

around 𝑇𝑒 =4 seconds with 𝐻𝑠  from about 0.5 m to 1 m.   

 

 

Fig. 5 - Mean sea states for study sites in three wave climates. 

III. WEC PERFORMANCE OPTIMIZATION 

In order to derive a distribution of optimal WEC designs for 

different wave climates (resource classes), a design 

optimization algorithm was applied to the Reference Model 3 

(RM3) WEC with modelled wave spectra as inputs from the 

aforementioned thirty sites. The RM3 is a two-body point 

absorber, which was originally designed for a site off the shore 

of Eureka, California [4]. The scaling factor, λ, is a length scale 

with λ=1 corresponding to a RM3 point absorber with a 20 m 

diameter float, and a spar length of 42 m. 

The procedure for deriving the distribution of optimal 

scaling factors for each wave climate is illustrated in Fig. 6. 

First, a set of frequency response functions (FRFs) are derived 

from the boundary element tool WAMIT [5] for the nominal 

scale of the RM3 WEC (𝜆 = 1). The RM3 scale (𝜆) is then 

optimized for thirty-years of modelled 3-hourly wave spectra 

inputs for each wave climate to maximize the cost parameter. 

 

λ = argmax (
𝐸

1 + 𝜆3
) (4) 

 

using the optimization algorithm (fminbnd in MATLAB [4]), 

where E is the energy converted (absorbed) in the sea state, and 

the denominator, 1 + 𝜆3, is a proxy for cost.  

This procedure considers two optimization cases: one 

using optimal resistive damping control (RDC), where the PTO 

input is a simple constant proportion of velocity; and the other 

using complex conjugate control (CCC), applying a pseudo-

spectral approach to find the optimal impedance matching 

control [7]. These two approaches return different powers for a 

given device scale and sea state. The optimal device scale is 

dependent on the control applied [8], with the RDC 

optimization delineating the lower bound for energy absorption, 

and CCC optimization its upper bound [9]. 

Fig. 7 shows the optimal scale for RM3 devices at each of 

the ten selected sites within the West, Gulf and East Coast 

climates. The median device scale is shown along with variance 

bars indicating variations in the optimal design scaling factor 

due to hourly, seasonal and inter-annual variations in the wave 

spectra. As expected, the largest scaling parameters are 

observed for the West Coast sites, followed by those observed 

for the East and Gulf Coasts.  

Median scaling factors are found to be remarkably similar 

between most sites within each region, likely due to similar 

energy distributions within the partitioned period bands, and 

partly reflected in the similar mean 𝑇𝑒  values among the ten 

sites within each wave climate. This explanation appears to be 

especially justified given the two Class 2, West Coast, “outlier” 

sites, 3 and 6, have similar scaling factors compared to the other 

Class 3 sites in this wave climate because of similar energy 

distributions within partitioned period bands. In other words, 

the optimal design scaling factor is not as sensitive to the 

amount of available energy. Explaining the result for the East 

Coast site 10, however, is difficult as this site exhibits a similar 

median design scale factor to the other East Coast sites despite 

exhibiting wave climate characteristics as the Gulf Coast; 

specifically, the same characteristic energy distribution.  More 

investigation is needed to explain these results, including the 

possibility of an error in the procedure. 
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Fig. 6 -  RM3 WEC scale optimization process. 

The optimal scaling factors are not sensitive to the control 

approach for the West Coast sites, with the exception of site 1. 

However, for the East and Gulf Coast sites, optimization with 

CCC generally provides significant benefits by reducing WEC 

design scales using optimal damping. For the Gulf Coast sites, 

it also reduces the variability in median optimal scaling factor 

among the ten sites. 

 

 

Fig. 7 - Optimal RM3 scale (𝝀) for sites in West, Gulf and East Coast 
regions.  Error bars show seasonal variation of site. Note that sites do not 
correspond between regions. 

The distributions of derived optimal WEC designs are also 

examined by plotting histograms that include scaling factors for 

approximately thirty thousand sea states within each of the 

three wave climates. These frequency histograms are shown in  

Fig. 8, for CCC optimization, and Fig. 9, for RDC optimization. 

In both plots the distributions for each wave climate overlap, 

but the population of optimal scales for each climate clearly 

shift from high values for the West Coast, where the energy is 

concentrated in moderate swells (Band 3), to the Gulf Coast, 

where the energy is concentrated in local wind seas (Band 1). 

The shapes of these frequency histograms are particularly 

useful as a measure of the feasibility of WEC classification. 

Unimodal distributions, near-normal distributions in particular, 

indicate success because variations can be explained by 

inherent hourly and seasonal variations in sea states. These 

plots show the effect of the optimization control approach on 

the distribution shape.  

For CCC optimization, three distinct distribution shapes are 

observed for each region: a bi-modal distribution for the West 

Coast, a right-skewed distribution for the East Coast, and a left-

skewed distribution for the Gulf Coast. The bi-modal 

distribution for the West Coast suggests the need for two 

different standard design classes, but this result needs to be 

investigated further because it does not appear to be supported 

by the results in Fig. 7, for which the only outliers, sites 1 and 

2, are typical Class 3 West Coast sites.  

For optimization with optimal RDC, the West Coast 

distribution shape remains predominantly bi-modal, but the 

East Coast distribution changes to a left-skewed shape, and the 

left-skewed Gulf Coast distribution becomes a “dog food” 

distribution; which would indicate that a standard design class 

for this climate is not possible.  

Although preliminary, these results show that the derived 

distributions for optimal scales are generally unique for distinct 

wave climates (resource classes). While the shapes of these 

distributions are not normal, they are generally monotonic and 

only slightly skewed. As one would expect, the optimal scaling 

factor (size) of the WEC appears to be driven mainly by the 

dominant period band for each wave climate (resource class). 

For the West Coast, moderate period swell contributes most of 

the energy in Band 3, (10 s < 𝑇𝑝 < 14 s), even for the two 

Class 2 sites, 3 and 6. For the East Coast most of the energy is 

in the short period swell in Band 2, (7 s < 𝑇𝑝 < 10 s), and for 

the Gulf Coast, low period local wind seas in Band (𝑇𝑝 < 7 s). 
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Fig. 8 - Histogram of optimal scales with complex-conjugate control for all 

sea states analyzed on West, Gulf and East Coast regions. 

 

Fig. 9 - Histogram of optimal scales with resistive damping control for all 
sea states analyzed on West, Gulf and East Coast regions. 

IV. WEC DESIGN LOADS 

In order to investigate the variation (spread) of extreme load 

responses within a resource class, representative design load 

estimates for the nominal scale of the RM3 WEC (𝜆 = 1) were 

derived for three NDBC buoy sites in the West Coast climate. 

To characterise both the sites of interest and representative 

design load metrics, the WEC Design Response Toolbox 

(WDRT) [10] was used. For the former, the WDRT includes a 

routine for creating environmental contours of extreme sea 

states based on the principle components analysis (PCA) 

methodology [11], allowing the characterization of the joint 

probability distribution of sea state variables of interest. The 

resulting samples can be used for numerical or physical model 

simulations analysing the design response of WECs 

characterized through complementary cumulative distribution 

functions [12]. Fig. 10 shows the resulting characterization for 

three National Data Buoy Center (NDBC) locations in the West 

Coast region, NDBC station 46011 (Southern California), 

46022 (Northern California), and 46041 (Oregon). The 

locations were selected to provide an indication of the inter-

region variation that may be expected, and correspond 

approximately to the West Coast sites 7, 8 and 9 in the Section 

III analysis. 

 

 
Fig. 10 - Environmental characterization of the NDBC sites: 46011 (top), 

46022 (middle) and 46041 (bottom). 
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For each site, 200 samples (see red dots in Fig. 10) were 

selected using the PCA approach to characterize the 100-year 

return environmental conditions. For each of the 200 sea state 

samples (per site), 3-hour loading estimates were obtained from 

a WEC-Sim linear model of the nominal scale RM3 WEC. The 

corresponding 200 short-term extreme response distributions 

(estimated from Weibull tail fits) were obtained for key design 

variables, namely the wave excitation force (surge and heave) 

acting the prime mover (float body) and the power take-off 

(PTO) force. The formulation of a Weibull tail fit short-term 

extreme distribution CDF is given in Equation (5), where 𝑥 is 

the variable of interest, 𝑠𝑐  is the scale parameter, 𝑠ℎ  is the 

shape parameter and 𝑁 is the number of peaks counted in the 

time-series. It is noted that 𝑠𝑐, 𝑠ℎ, and 𝑁 depend on the short-

term response sample.  

𝐶𝐷𝐹𝑊𝑒𝑖𝑏𝑢𝑙𝑙−𝑡𝑓 = (1 − 𝑒−(
𝑥
𝑠𝑐

)
𝑠ℎ

)

𝑁

(5) 

 

 Having derived the 200 device short-term extreme response 

probabilities for each site, site-specific long-term extreme 

response distribution were estimated by a weighted-average of 

the complementary cumulative distribution function (CCDF), 

as described in Equation (6), where 𝑤𝑖  is the weight given to 

each short-term sample ( ∑ 𝑤𝑖
𝑖=200
𝑖=1 = 1 ). 

 

𝐶𝐶𝐷𝐹𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚 = ∑ 𝑤𝑖(1 − 𝐶𝐷𝐹𝑊𝑒𝑖𝑏𝑢𝑙𝑙−𝑡𝑓,𝑖)

𝑖=200

𝑖=1

 (6) 

  

The long-term CCDF is sometimes referred to as a ‘survival 

function’. Examples of the resulting survival functions are 

illustrated in Fig. 11. These plots also show the individual 

short-term survival response functions. 

There is a significant variation across the site both in terms 

of annual average wave power density (46011 – 25.6 kW/m; 

46022 – 36.8 kW/m; 46041 – 31.8 kW/m) and in terms of 

extreme loads (see Fig. 11). However, there are no clear 

correlations between the dimensional load metrics (as for the 

float surge excitation force presented in Fig. 11) and the annual 

wave power. This problem was addressed by non-

dimensionalizing the design loads obtained as a function of the 

target return period using a linear incident wave force (Froude-

Krylov component), given by 𝜌𝑔𝐴𝑐|𝜂|𝑟 , where 𝐴𝑐  is the 

characteristic cross-sectional area and |𝜂|𝑟 the long-term wave 

elevation for return period r.  

Fig. 12 to Fig. 14 show representative results, including the 

dimensional wave elevation and float heave exicting force 

metrics, the non-dimensional design loads for the float (heave 

and surge), and the non-dimensional PTO design load, 

respectively. The largest difference between the non-

dimensional design loads (approximately 7% variation for the 

100-year return non-dimensional float heave exciting force) is 

substantially lower than the inter-regional wave power 

variation across the three sites, which suggests that the long-

term linear incident wave force for return period r can be used 

for classification purposes. 

This preliminary result indicates the suitability of the 

classification system to provide guideline estimates of key 

design load metrics as a function of the design variable, WEC 

design and site characteristics. Future work may address the 

combined effects of WEC and site scaling, as well as the 

influence of nonlinearities in the overall results.  

 

 
Fig. 11 - Examples of the resulting survival functions (float surge exciting 

force) for multiple NDBC sites: 46011 (top), 46022 (middle) and 46041 

(bottom). 
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Fig. 12 – Long-term return values of the wave elevation (top) and RM3 float 

heave exicting force (bottom) for 3 NDBC sites (West Coast). 

 
Fig. 13 – Non-dimensional long-term return values of the RM3 float heave 

(top) and surge (bottom) exicting force for 3 NDBC sites. 

 
Fig. 14 – Non-dimensional long-term return values of the RM3 PTO force for 

3 NDBC sites. 

V. CONCLUSIONS 

In the present study, a classification system for U.S. wave 

resources reveals unique regional wave climate characteristics 

and the potential to develop standard WEC designs (a WEC 

classification system). The feasibility of WEC classification is 

examined through: 1) Evaluation of derived distributions of 

optimized WEC design scaling factors for an RM3 point 

absorber operating in three different wave climates spanning 

the full range of resource class conditions; and 2) Evaluation of 

WEC extreme load responses for three Class 3 wave sites 

located in the West Coast wave climate. 

Preliminary results indicate that WEC classification is a 

potentially viable design strategy, with standard design classes 

serving broad regional wave climates because wave energy 

contributions are generally concentrated within distinct 

partitioned period bands for these climates. Optimal WEC 

designs appear to be driven mainly by the dominant period 

bands observed for three U.S. wave energy resource classes, 

high energy Class 3 sites along the West Coast with most of the 

energy contribution in moderate period swell, moderate energy 

Class 2 sites along the East Coast with most of the energy 

contribution in short period swell, and low energy sites along 

the Gulf Coast with most of the energy contribution in low 

period local wind seas. The WEC design classes for these three 

wave climates reflect these dominant period bands. Based on 

these preliminary results for an RM3 point absorber optimizing 

the performance function prescribed with CCC, the following 

standard design classes (by float diameter) would generally 

apply: An 18 m diameter (λ=0.9) WEC for the West Coast, a 

14 m diameter (λ=0.7) WEC for the East Coast, and a 11 m 

diameter (λ=0.55) WEC for the Gulf Coast.  

The WEC response to extreme loads was found to vary 

considerably within the most energetic of the resource classes 

examined in the West Coast climate, suggesting the need for 

these standard design classes to meet structural design 

requirements based on the upper limits of load response within 

a given resource class. However, the observed load metric 

variation is lower than the inter-region resource variations, 

which provides a preliminary indication of the suitability of the 

classification system to provide guideline estimates of key 

design load metrics as a function of the target design variable, 

WEC design and site characteristics.  

This initial investigation of standard WEC design feasibility 

is encouraging, but additional work is needed to verify 

observed trends, their underlying mechanisms, and 

unexplained anomalies. Future work, including 

recommendations by [2], may include:  

 

 Use of summary statistics for derived distributions as 

measures of classification performance.  

 Extension of the analyses for WEC design optimization 

and extreme load response using a larger population of 

hindcast wave spectra from more sites within each wave 

climate and resource class.  

 Evaluation of derived distributions of WEC extreme load 

responses, as was done for scaling factors.  

 Refinement of the performance function, and an 

investigation of its effects on the derived optimized scaling 

factor distributions.  
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